综合应用题:如图,有一副直角三角板如图①放置(其中∠D=45°,∠C=30°),PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.
(1)∠DPC=75°75°;
(2)如图②,若三角板PBD保持不动,三角板∠PAC绕点P逆时针旋转,转速为10°/秒,转动一周三角板PAC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC∥DB成立;
(3)如图③,在图①基础上,若三角板PAC的边PA从PN.处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当∠CPD=∠BPM,求旋转的时间是多少?

【考点】平行线的判定与性质.
【答案】75°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:2144引用:5难度:0.3
相似题
-
1.在上完数学课后,王磊发现操场上的旗杆与旁边一棵大树的影子好像平行,但他不敢肯定,此时他最好的办法是( )
发布:2025/6/17 7:30:2组卷:26引用:1难度:0.6 -
2.已知直线a,b,c是同一平面内的三条不同直线,下面四个结论:
①若a∥b,b∥c,则a∥c;②若a∥b,a⊥c,则b⊥c;③若a⊥b,b⊥c,则a⊥c;④若a⊥c,且c与b相交,则a与b相交,其中,结论正确的是( )发布:2025/6/17 7:0:2组卷:219引用:4难度:0.7 -
3.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.
(1)求证:CE∥GF;
(2)试判断∠AED与∠D之间的数量关系,并说明理由;
(3)若∠EHF=88°,∠D=28°,求∠AEM的度数.发布:2025/6/17 8:0:1组卷:275引用:3难度:0.8