已知函数f(x)=-x3+x2+bx+c,(x<1) alnx,(x≥1)
的图象过点(-1,2),且在点(-1,f(-1))处的切线与直线x-5y+1=0垂直.
(1)求实数b,c的值;
(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值;
(3)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
- x 3 + x 2 + bx + c , ( x < 1 ) |
alnx , ( x ≥ 1 ) |
【答案】解:(1)b=0,c=0.
(2)2.
(3)曲线y=f(x)上存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.
(2)2.
(3)曲线y=f(x)上存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:292引用:7难度:0.1