如图,点A,B分别是椭圆x236+y220=1的长轴的左右端点,点F为椭圆的右焦点,直线PF的方程为:3x+y-43=0且PA⊥PF.
(1)求直线AP的方程;
(2)设点M是椭圆长轴AB上一点,点M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.
x
2
36
+
y
2
20
=
1
3
x
+
y
-
4
3
=
0
【考点】椭圆的几何特征.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:65引用:6难度:0.1
相似题
-
1.已知椭圆
=1(a>b>0)的一个焦点为F(2,0),椭圆上一点P到两个焦点的距离之和为6,则该椭圆的方程为( )x2a2+y2b2发布:2024/12/29 12:30:1组卷:12引用:2难度:0.7 -
2.已知椭圆C的两焦点分别为
、F1(-22,0),长轴长为6.F2(22,0)
(1)求椭圆C的标准方程;
(2)求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.发布:2024/12/29 11:30:2组卷:442引用:6难度:0.8 -
3.阿基米德(公元前287年-公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在x轴上,且椭圆C的离心率为
,面积为8π,则椭圆C的方程为( )32发布:2024/12/29 12:0:2组卷:229引用:7难度:0.5