第56届世界乒乓球锦标赛将于2022年在中国成都举办,国球运动又一次掀起热潮.现有甲乙两人进行乒乓球比赛,比赛采用7局4胜制,每局为11分制,每赢一球得1分,
(1)已知某局比赛中双方比分为8:8,此时甲先连续发球2次,然后乙连续发球2次,甲发球时甲得分的概率为35,乙发球时乙得分的概率为12,各球的结果相互独立,求该局比赛甲以11:9获胜的概率;
(2)已知在本场比赛中,前两局甲获胜,在后续比赛中,每局比赛甲获胜的概率为23乙获胜的概率为13,且每局比赛的结果相互独立.两人又进行了X局后比赛结束,求X的分布列与数学期望.
3
5
1
2
2
3
1
3
【考点】离散型随机变量的均值(数学期望).
【答案】(1);
(2)X的分布列为
数学期望E(X)=2×+3×+4×+5×=.
21
100
(2)X的分布列为
X | 2 | 3 | 4 | 5 |
P | 4 9 |
8 27 |
13 81 |
8 81 |
4
9
8
27
13
81
8
81
236
81
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:67引用:2难度:0.4
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:201引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7