“一题多解利于拓宽思路,多题一解利于归纳方法”.中考复习学会总结归纳,题可以越做越少,方法却越用越活.下列两个问题请用相同的方法解答并做简要的方法归纳:
(1)问题①:如图,P为正方形ABCD边BC上任一点,BG⊥AP于点G,在AP的延长线上取点E,使AG=GE,连接BE,CE.∠CBE的平分线交AE于N点,连接DN,求∠AND度数;
(2)问题②:如图,P是正方形ABCD边BC上一个动点,线段AE与AD关于直线AP对称,连接EB并延长交直线AP于点F,连接CF.求证:BE=2CF;

(3)方法归纳:
①隐含了什么特殊角 45°45°;
②可以作什么特殊三角形 等腰直角三角形等腰直角三角形;
③构造了什么基本图形 双子型双子型.
2
【考点】四边形综合题.
【答案】45°;等腰直角三角形;双子型
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/12 15:30:1组卷:108引用:1难度:0.4
相似题
-
1.在△ABC中,∠ACB=90°,AC=BC,D是AB的中点,点E是边AC上的一动点,点F是边BC上的一动点.
(1)若AE=CF,试证明DE=DF;
(2)在点E、点F的运动过程中,若DE⊥DF,试判断DE与DF是否一定相等?并加以说明.
(3)在(2)的条件下,若AC=1,四边形ECFD的面积是一个定值吗?若不是,请说明理由,若是,请直接写出它的面积.发布:2025/6/13 17:0:1组卷:32引用:1难度:0.1 -
2.已知,四边形ABCD是矩形,AD>AB,E、F、G分别是AB、BC、AD上的点,
,AEBE=n.ADBE=DEEF
(1)当n=1,DE⊥EF.
①如图1,求证:;ADBE=DEEF
②如图2,连接DF,若CF=2AG,求;DFDG
(2)如图3,,AD=2AB=10,∠GEF=45°,直接写出△EFG面积的最小值.n=23发布:2025/6/13 17:30:5组卷:459引用:4难度:0.2 -
3.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.
(1)几秒钟后△DPQ的面积等于28cm2;
(2)在运动过程中,是否存在这样的时刻,使点D恰好落在以点Q为圆心,PQ为半径的圆上?若存在,求出运动时间;若不存在,请说明理由.
(3)在点P、Q的运动过程中,几秒后△DPQ是直角三角形?请直接写出答案.发布:2025/6/13 16:30:1组卷:129引用:1难度:0.3