某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:
【初步探究】
(1)如图2,当ED∥BC时,则α=45°45°;
(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系:BF=AF+2CFBF=AF+2CF;
【深入探究】
(3)如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.
【拓展延伸】
(4)如图5,在△ABC与△CDE中,∠ACB=∠DCE=90°,若BC=mAC,CD=mCE(m为常数).保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.

2
2
【考点】三角形综合题.
【答案】45°;BF=AF+CF
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1848引用:6难度:0.3
相似题
-
1.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF.
(1)如图1,求证:∠BED=∠AFD;
(2)如图1,求证:BE2+CF2=EF2;
(3)如图2,当∠ABC=45°,若BE=4,CF=3,求△DEF的面积.发布:2024/12/23 14:0:1组卷:216引用:3难度:0.2 -
2.已知A(0,4),B(-4,0),D(9,4),C(12,0),动点P从点A出发,在线段AD上,以每秒1个单位的速度向点D运动:动点Q从点C出发,在线段BC上,以每秒2个单位的速度向点B运动,点P、Q同时出发,当其中一个点到达终点时,另一个点随之停止运动,设运动时间为t(秒).
(1)当t=秒时,PQ平分线段BD;
(2)当t=秒时,PQ⊥x轴;
(3)当时,求t的值.∠PQC=12∠D发布:2024/12/23 15:0:1组卷:185引用:3难度:0.1 -
3.一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).
(1)当∠AFD=°时,DF∥AC;当∠AFD=°时,DF⊥AB;
(2)在旋转过程中,DF与AB的交点记为P,如图2,若△AFP有两个内角相等,求∠APD的度数;
(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由.发布:2024/12/23 18:30:1组卷:1755引用:10难度:0.1