如图,在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于点A(-3,0),B(33,0),与y轴交于点C,其对称轴与x轴交于点D.
(1)求二次函数的解析式;
(2)若点E是线段BC上的一点,过点E作x轴的垂线,垂足为F,且EF=2EC,求点E的坐标;
(3)若P为y轴上的一个动点,连接PD,直接写出12PC+PD的最小值;
(4)若点P是抛物线对称轴上的一个动点,连接PA,PC,设点P的纵坐标为t,当∠APC不小于60°时,求t的取值范围.

3
3
1
2
PC
+
PD
【考点】二次函数综合题.
【答案】(1)求二次函数的解析式为y=-x2+x+3;
(2)点E的坐标为E(,);
(3)的最小值为3;
(4)当∠AMC不小于60°时,t的取值范围是0≤t≤2.
1
3
2
3
3
(2)点E的坐标为E(
3
3
5
12
5
(3)
1
2
PC
+
PD
(4)当∠AMC不小于60°时,t的取值范围是0≤t≤2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:753引用:1难度:0.1
相似题
-
1.如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m).
(1)求抛物线的解析式.
(2)点P是线段AC上一个动点,过点P作x轴的垂线交抛物线于点E,求线段PE最大时点P的坐标.
(3)点F是抛物线上的动点,在x轴上是否存在点D,使得以点A,C,D,F为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的点D的坐标;如果不存在,请说明理由.发布:2025/6/14 23:30:1组卷:4755引用:21难度:0.1 -
2.边长为1的正方形OA1B1C1的顶点A1在x轴的正半轴上,如图将正方形OA1B1C1绕顶点O顺时针旋转75°得正方形OABC,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为 .
发布:2025/6/14 23:30:1组卷:2330引用:24难度:0.7 -
3.如图,抛物线y=
x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).12
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.发布:2025/6/15 6:30:1组卷:2010引用:14难度:0.5