如图1,在平面直角坐标系中,抛物线y=-32x2+92x+6与x轴交于A、C两点,与y轴交于点B,且点A的横坐标为4,点D和点B关于抛物线的对称轴对称.

(1)求线段AC的长;
(2)如图1,在线段OA上有一动点E,过点E作OA的垂线交直线CD于点N,交抛物线于点P,当线段PN取得最大值时,如图2,将此时的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<a<90°),连接AB、E′A、E′B,求E′A+16E′B的最小值.
(3)如图3,抛物线y=-32x2+92x+6沿x轴正方向平移得到新的抛物线y′,y′经原点O,y′与x轴的另一个交点为F,设点Q是抛物线y′上任意一点,点M为原抛物线对称轴上任意一点,能否存在点Q,使得△MQF是以Q为直角顶点的等腰直角三角形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.
3
2
x
2
+
9
2
1
6
3
2
x
2
+
9
2
【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:322引用:2难度:0.1
相似题
-
1.如图,直线y=kx+b(b<0)与抛物线y=ax2相交于点A(x1,y1),B(x2,y2)两点,抛物线y=ax2经过点(4,-2)
(1)求出a的值;
(2)若x1•OB-y2•OA=0,求b的值;
(3)将抛物线向右平移一个单位,再向上平移n的单位.若在第一象限的抛物线上存在这样的不同的两点M、N,使得M、N关于直线y=x对称,求n的取值范围.发布:2025/6/23 10:30:1组卷:53引用:1难度:0.3 -
2.如图,抛物线y=
(x-3)2-1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.12
(1)求点A,B,D的坐标;
(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;
(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.发布:2025/6/23 9:0:1组卷:2875引用:59难度:0.1 -
3.如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.发布:2025/6/23 11:30:2组卷:1904引用:25难度:0.1