(1)探究:如图1,E、F分别在正方形ABCD的边BC、CD上,且∠EAF=45°,请猜测并写出线段DF、BE、EF之间的等量关系(不必证明);
(2)变式:如图2,E、F分别在四边形ABCD的边BC、CD上,∠B+∠D=180°,AB=AD,∠EAF=12∠BAD,则线段BE、EF、FD的等量关系又如何?请加以证明;
(3)应用:在条件(2)中,若∠BAD=120°,AB=AD=1,BC=CD(如图3),求此时△CEF的周长.
1
2
【考点】正方形的性质;全等三角形的判定与性质.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:600引用:2难度:0.1
相似题
-
1.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是 .
发布:2025/6/5 10:0:2组卷:617引用:8难度:0.4 -
2.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为 .
发布:2025/6/5 9:0:1组卷:11557引用:52难度:0.5 -
3.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是( )
发布:2025/6/5 10:0:2组卷:1700引用:16难度:0.5