(1)问题发现:如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是 BD=CEBD=CE,位置关系是 BD⊥CEBD⊥CE;
(2)探究证明:如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC的延长线上时,连接EC,写出此时线段AD,BD,CD之间的等量关系,并证明;
(3)拓展延伸:如图3,在四边形ABCD中,AB=BC,∠ABC=∠ADC=60°.若AD=6,CD=4,请求出BD的长.

【考点】四边形综合题.
【答案】BD=CE;BD⊥CE
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:135引用:3难度:0.1
相似题
-
1.(1)感知:如图①,四边形ABCD和CEFG均为正方形,BE与DG的数量关系为 ;
(2)拓展:如图②,四边形ABCD和CEFG均为菱形,且∠A=∠F,请判断BE与DG的数量关系,并说明理由;
(3)应用:如图③,四边形ABCD和CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,求菱形CEFG的面积.发布:2025/5/23 5:30:3组卷:229引用:1难度:0.3 -
2.如图,在正方形ABCD中,
,将正方形ABCD绕点C按顺时针方向旋转90°得到正方形CEFM.动点P从点A出发,沿AC方向运动,运动速度为1cm/s.过点P作AC的垂线,交AD于点Q,连接CQ,交PF于点H.设动点P的运动时间为t s(0<t<8).解答下列问题:AB=42cm
(1)当t为何值时,S△APQ:S△CDF=1:4?
(2)设△PFQ的面积为S cm2,求S与t之间的关系式;
(3)当运动时间为2 s时,求PH的长;
(4)若N是PF的中点,在运动的过程中,点N到∠DFE两边距离的和是否为定值?请说明理由.发布:2025/5/23 5:30:3组卷:264引用:1难度:0.1 -
3.如图所示,在平面直角坐标系中,正方形OABC在第一象限,A(8,0).点M,N分别为边OA,AB上的动点,且点OM=AN,D,E分别为CM,ON的中点,F是DE的中点.设OM=t,点P的纵坐标为y,请解决下列问题:
(1)判断CM与ON的位置关系,并写出证明过程;
(2)请求出y关于t的函数表达式,并直接写出y最大时,点P的坐标;
(3)在点M从点O运动到点A的过程中,设点F走过的路线长为L,线段PF扫过的面积为S,请直接写出L与S的值.发布:2025/5/23 6:0:2组卷:77引用:1难度:0.3