我们给出定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=75°,∠B=80°.求∠C,∠D的度数.
(2)在探究“等对角四边形”性质时:
①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论.
②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=7,AD=5.求对角线AC的长.
【考点】四边形综合题.
【答案】(1)∠C,∠D的度数分别为75°,125°;
(2)①证明见解答;
②不成立,举反例见解答;
(3)对角线AC的长为2或.
(2)①证明见解答;
②不成立,举反例见解答;
(3)对角线AC的长为2
13
97
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/5 13:0:2组卷:113引用:2难度:0.3
相似题
-
1.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:.
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,探求AH满足的数量关系.(可利用(2)得到的结论)发布:2025/6/17 11:30:1组卷:878引用:1难度:0.3 -
2.请问读下列材料,并解答相应的问题
在Rt△ABC中、如果锐角A确定,那么角A的对边与邻边的比值随之确定,这个比叫做角A的正切,记作tanA,这是我们熟悉的三角函数中关于正切的定义.你不知道的是,世界上最早的正切函数表是由我国唐代一位叫做僧一行(683-727)的僧人在其所著《大衍历》中首次创作的.他通过某地影长的观测,求人阳天顶距进而求出该地各节气初日影长的方法,并为此编制了0度到80度的正切函数表.
我们摘取了部分正切函数表,如图所示,当角的度数是63.2度时,我们查表可知其对应的正切值为1.97,反之,如果已知一个角的正切值1.97,则这个角的度数是63.2度.角度 正切值 63.2 1.97 63.3 1.98 63.4 1.99 63.5 2.00 63.6 2.01 63.7 2.02
①若AE=AD,∠DPE=90°,测得∠DEP=63.5°,则查表可知tan∠DEP=,此时可求出线段PE=.(直接写出答案)
②若AE=3,∠DPE=90°,若此时点P恰好是AC中点,请直接写出tan∠DEP=.
③若AE的值不是3,那么在变化过程中,tan∠DEP是否发生变化?请说明理由.发布:2025/6/17 10:0:1组卷:58引用:1难度:0.4 -
3.如图在平面直角坐标系中,O是坐标原点,矩形OACB的顶点A,B分别在x轴、y轴上,已知OA=3,点D为y轴上一点,其坐标为(0,1),若连接CD,则CD=5,点P从点A出发以每秒1个单位的速度沿线段A-C-B的方向运动,当点P与点B重合时停止运动,运动时间为t秒
(1)求B,C两点坐标;
(2)求△OPD的面积S关于t的函数关系式;
(3)当点D关于OP的对称点E落在x轴上时,请直接写出点E的坐标,并求出此时的t值.发布:2025/6/17 10:30:2组卷:135引用:3难度:0.1