试卷征集
加入会员
操作视频

综合与实践:
问题情境
图形变换包括平移、旋转、对称、位似等,其中旋转就是将图形上的每一点在平面内绕着旋转中心旋转固定角度的位置移动,其中“旋”是过程,“转”是结果.旋转的性质则是解决实际问题的关键.数学活动课上,老师让同学们根据如下问题情境,发现并提出问题.如图1,△ABC与△EDC都是等腰直角三角形,点E,D分别在AC和BC上,连接EB.将线段EB绕点B顺时针旋转90°,得到的对应线段为BF.连接BE,DF.“兴趣小组”提出了如下两个问题:
①AE=BD,AE⊥BD;②DF=AB,DF⊥AB

解决问题:
(1)请你证明“兴趣小组”提出的第②个问题.
探索发现:
(2)“实践小组”在图1的基础上,将△EDC绕点C顺时针旋转角度α(0°<α<90°),其它条件保持不变,得到图2.
①请你帮助“实践小组”探索:“兴趣小组”提出的两个问题是否还成立?如果成立,请给出证明;若不成立,请说明理由.
②如图3,当AD=AF时,请求出此时旋转角α的大小.

【考点】相似形综合题
【答案】(1)证明见解答;
(2)①都成立;
②45°.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:278引用:2难度:0.4
相似题
  • 1.如图①,在Rt△ABC中,AC=BC,∠ACB=90°,点D为BC边上的一点,连接AD,过点C作CE⊥AD于点F,交AB于点E,连接DE.
    (1)若AE=2BE,求证:AF=2CF;
    (2)如图②,若AB=
    2
    ,DE⊥BC,求
    BE
    AE
    的值.

    发布:2025/5/24 7:30:1组卷:247引用:4难度:0.2
  • 2.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.
    (1)若四边形ABCD为正方形.
    ①如图1,请直接写出AE与DF的数量关系

    ②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;
    (2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.

    发布:2025/5/24 6:30:2组卷:1835引用:5难度:0.5
  • 3.在△ABC中,AB=AC,P是BC边上一点,PD∥AB,交AC于点D.
    (1)如图1,连接PA,若∠APD=∠B.
    ①求证:AB2=PA•BC;
    ②过点D作DF⊥PA于F,求
    PF
    PC
    的值;
    (2)如图2,过P作PG∥AC,交AB于点G,点Q为△ABC外一点,且P,Q关于直线DG对称,连接QA,QC,求证:∠B+∠Q=180°.

    发布:2025/5/24 7:0:1组卷:93引用:2难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正