某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要结论.一是发现抛物线y=ax2+2x+3(a≠0),当实数a变化时,它的顶点都在某条直线上;二是发现当实数a变化时,若把抛物线y=ax2+2x+3的顶点的横坐标减少1a,纵坐标增加1a,得到A点的坐标;若把顶点的横坐标增加1a,纵坐标增加1a,得到B点的坐标,则A、B两点一定仍在抛物线y=ax2+2x+3上.
(1)请你协助探求出当实数a变化时,抛物线y=ax2+2x+3的顶点所在直线的解析式;
(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;
(3)在他们第二个发现的启发下,运用“一般-一特殊-一般”的思想,你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立请说明理由.
1
a
1
a
1
a
1
a
【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:193引用:4难度:0.1
相似题
-
1.如图,已知二次函数y=ax2+bx-4的图象与x轴交于A,B两点,(点A在点B左侧),与y轴交于点C,点A的坐标为(-2,0),且对称轴为直线x=1,直线AD交抛物线于点D(2,m).
(1)求二次函数的表达式;
(2)在抛物线的对称轴上是否存在一点M,使△MAC的周长最小,若存在,求出点M的坐标;
(3)如图2,点P是线段AB上的一动点(不与A、B重合),过点P作PE∥AD交BD于E,连接DP,当△DPE的面积最大时,求点P的坐标.发布:2025/6/6 20:30:1组卷:90引用:1难度:0.2 -
2.如图,已知抛物线y=x2+bx+c与直线y=-x+3相交于坐标轴上的A,B两点,顶点为C.
(1)填空:b=
(2)将直线AB向下平移h个单位长度,得直线EF.当h为何值时,直线EF与抛物线y=x2+bx+c没有交点?
(3)直线x=m与△ABC的边AB,AC分别交于点M,N.当直线x=m把△ABC的面积分为1:2两部分时,求m的值.发布:2025/6/6 21:0:2组卷:327引用:5难度:0.3 -
3.如图,抛物线y=ax2+bx+2经过点A(-1,0),B(4,0),交y轴于点C.
(1)求抛物线的表达式.
(2)点D为y轴右侧抛物线上一点,是否存在点D,使S△ABC=S△ABD?若存在,请求出点D的坐标;若不存在,请说明理由.23
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求点E的坐标.发布:2025/6/6 23:30:1组卷:40引用:1难度:0.3