在①C的渐近线方程为y=±x②C的离心率为2这两个条件中任选一个,填在题中的横线上,并解答.
已知双曲线C的对称中心在坐标原点,对称轴为坐标轴,点P(2,-2)在C上,且.
(1)求C的标准方程;
(2)已知C的右焦点为F,直线PF与C交于另一点Q,不与直线PF重合且过F的动直线l与C交于M,N两点,直线PM和QN交于点A,证明:A在定直线上.
注:如果选择两个条件分别解答,则按第一个解答计分.
2
P
(
2
,-
2
)
【答案】(1);
(2)证明见解析.
x
2
2
-
y
2
2
=
1
(2)证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:55引用:4难度:0.5
相似题
-
1.已知双曲线C:
的左焦点为F,右顶点为A,渐近线方程为y=±x2a2-y2b2=1(a>0,b>0)x,F到渐近线的距离为3.3
(Ⅰ)求C的方程;
(Ⅱ)若直线l过F,且与C交于P,Q两点(异于C的两个顶点),直线x=t与直线AP,AQ的交点分别为M,N.是否存在实数t,使得|+FM|=|FN-FM|?若存在,求出t的值;若不存在,请说明理由.FN发布:2024/8/6 8:0:9组卷:167引用:8难度:0.4 -
2.已知双曲线
的左、右顶点分别为A、B,渐近线方程为C:x2a2-y2b2=1(a>0,b>0),焦点到渐近线距离为1,直线l:y=kx+m与C左右两支分别交于P,Q,且点y=±12x在双曲线C上.记△APQ和△BPQ面积分别为S1,S2,AP,BQ的斜率分别为k1,k2.(23m3,23k3)
(1)求双曲线C的方程;
(2)若S1S2=432,试问是否存在实数λ,使得-k1,λk,k2.成等比数列,若存在,求出λ的值,不存在说明理由.发布:2024/7/31 8:0:9组卷:64引用:3难度:0.5 -
3.已知双曲线的一个顶点是(0,2),其渐近线方程为y=±2x,则双曲线的标准方程是( )
发布:2024/7/9 8:0:8组卷:108引用:4难度:0.7