阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时,∵(a-b)2=a-2ab+b≥0,∴a+b≥2ab,当且仅当a=b时取等号,
例如:当a>0时,求a+16a的最小值.
解:∵a>0,∴a+16a≥2a⋅16a,又∵2a⋅16a=8,∴a+16a≥8,当a=4时取等号.
∴a+16a的最小值为8.
请利用上述结论解决以下问题:
(1)当x>0时,当且仅当x=33时,x+9x有最小值为 66.
(2)当m>0时,求m2-5m+24m的最小值.
(3)请解答以下问题:
如图所示,某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成,设平行于墙的一边长为x米,若要围成面积为450平方米的花圃,需要用的篱笆最少是多少米?
(
a
-
b
)
2
=
a
-
2
ab
+
b
≥
0
a
+
b
≥
2
ab
a
+
16
a
a
+
16
a
≥
2
a
⋅
16
a
2
a
⋅
16
a
=
8
a
+
16
a
≥
8
a
+
16
a
x
+
9
x
m
2
-
5
m
+
24
m
【答案】3;6
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:841引用:8难度:0.5