将一条数轴在原点O和点B处各折一下,得到如图所示的“折线数轴”,图中点A表示-10,点B表示10,点C表示18.我们称点A和点C在数轴上的“友好距离”为28个单位长度.动点P从点A出发,以2单位长度/秒的速度沿着“折线数轴”向其正方向运动.当运动到点O与点B之间时速度变为原来的一半.经过点B后立刻恢复原速;同时,动点Q从点C出发,以1单位长度/秒的速度沿着“折线数轴”向其负方向运动,当运动到点B与点O之间时速度变为原来的两倍,经过O后也立刻恢复原速.设运动的时间为t秒.

(1)动点P从点A运动至点C需要 1919秒,动点Q从点C运动至点A需要 2323秒;
(2)P,Q两点相遇时,求出相遇点M在“折线数轴”上所对应的数;
(3)是否存在t值,使得点P和点Q在“折线数轴”上的“友好距离”等于点A和点B在“折线数轴”上的“友好距离”?若存在,求出t的值;若不存在,请说明理由.
【考点】数轴.
【答案】19;23
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:2609引用:8难度:0.3