问题提出
(1)如图1,在△ABC中,点D在BC上,连接AD,CD=2BD,则△ABD与△ACD的面积之比为 1212;
问题探究
(2)如图2,在矩形ABCD中,AB=4,BC=8,点P为矩形内一动点,在点P运动的过程中始终有∠APB=45°,求△APB面积的最大值;(结果保留根号)
问题解决
(3)如图3,某市欲规划一块形如平行四边形ABCD的休闲旅游观光区,点A为观光区的入口,并满足∠BAD=120°,要求在边BC上确定一点E为观光区的南门,为了方便市民游览,修建一条观光通道AE(观光通道的宽度不计),且BE=2CE,AE=300米,为了容纳尽可能多的游客,要求平行四边形ABCD的面积最大,请问是否存在满足上述条件的面积最大的平行四边形ABCD?若存在,求出平行四边形ABCD的最大面积;若不存在,请说明理由.(结果保留根号)

1
2
1
2
【考点】四边形综合题.
【答案】
1
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/22 14:0:1组卷:748引用:4难度:0.1
相似题
-
1.如图,A、B、C、D为矩形的四个顶点,AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向终点B移动,点Q以1cm/s的速度向终点D移动,当有一点到达终点时,另一点也停止运动.设运动时间为t求:
(1)当t=1s时,求四边形BCQP的面积?
(2)当t为何值时,点P与点Q之间的距离为cm?5
(3)当t=时,以点P,Q,D为顶点的三角形是等腰三角形.发布:2025/6/14 20:30:2组卷:182引用:4难度:0.3 -
2.如图,在平面直角坐标系中,点C,D的坐标分别为C(a,0),D(b,0),且a,b满足(a+2)2+|b-4|=0,现同时将点C,D分别向右平移2个单位,再向上平移3个单位,分别得到点C,D的对应点A,B,连接AC,BD,AB.
(1)求点A,B的坐标及四边形ABDC的面积S四边形ABDC;
(2)在x轴上是否存在一点M,连接MA,使S△MAC=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由;13
(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP,∠DOP,∠APO之间满足的数量关系.发布:2025/6/15 3:30:1组卷:218引用:2难度:0.2 -
3.综合与实践
问题情景:数学活动课上,老师出示了一个问题:如图①,在▱ABCD中,BE⊥AD,垂足为E,F为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证明;
独立思考:(1)请解答老师提出的问题;
实践探究:(2)希望小组受此问题的启发,将▱ABCD沿着BF(F为CD的中点)所在直线折叠,如图②,点C的对应点为C',连接DC'并延长交AB于点G,请判断AG与BG的数量关系,并加以证明;
问题解决:(3)智慧小组突发奇想,将▱ABCD沿过点B的直线折叠,如图③,点A的对应点A′,使A'B⊥CD于点H,连接A'M,交CD于点N,该小组提出一个问题:若此▱ABCD的面积为20,边长AB=5,BC=,求图中阴影部分(四边形BHNM)的面积.请你思考此问题,直接写出结果.833发布:2025/6/14 19:30:1组卷:200引用:1难度:0.1