设椭圆Γ:x2a2+y2b2=1(a>b>0),F1,F2是椭圆Γ的左、右焦点,点A(1,32)在椭圆Γ上,点P(4,0)在椭圆Γ外,且|PF2|=4-3.
(1)求椭圆Γ的方程;
(2)若B(1,-32),点C为椭圆Γ上横坐标大于1的一点,过点C的直线l与椭圆有且仅有一个交点,并与直线PA,PB交于M,N两点,O为坐标原点,记△OMN,△PMN的面积分别为S1,S2,求S21-S1S2+S22的最小值.
Γ
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
,
F
1
,
F
2
A
(
1
,
3
2
)
|
P
F
2
|
=
4
-
3
B
(
1
,-
3
2
)
S
2
1
-
S
1
S
2
+
S
2
2
【答案】(1);
(2).
x
2
4
+
y
2
=
1
(2)
9
7
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:163引用:2难度:0.6
相似题
-
1.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
2.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:97引用:1难度:0.9 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7