某学校组织人工智能知识竞赛,在初赛中有两轮答题,第一轮从A类的4个问题中随机抽取3题作答,每答对1题得20分,答错得0分;第二轮从B类分值分别为10,20,30的3个问题中随机抽取2题作答,每答对1题该题得满分,答错得0分.若两轮总积分不低于90分则晋级复赛.甲、乙同时参赛,在A类的4个问题中,甲每个问题答对的概率为12,乙只能答对3个问题;在B类3个分值分别为10,20,30的问题中,甲答对的概率分别为1,12,13,乙答对的概率分别为45,35,25.甲、乙回答任一问题正确与否互不影响.
(1)分别求甲、乙在第一轮得最高分的概率;
(2)谁晋级复赛的概率更大?请说明理由.
1
2
1
2
1
3
4
5
3
5
2
5
【考点】相互独立事件和相互独立事件的概率乘法公式.
【答案】(1),;
(2)乙晋级复赛的概率更大,理由见解析.
1
8
1
4
(2)乙晋级复赛的概率更大,理由见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/29 8:0:10组卷:54引用:3难度:0.7
相似题
-
1.甲、乙两人进行围棋比赛,共比赛2n(n∈N*)局,且每局甲获胜的概率和乙获胜的概率均为
.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n),则( )12发布:2024/12/29 12:0:2组卷:255引用:6难度:0.6 -
2.小王同学进行投篮练习,若他第1球投进,则第2球投进的概率为
;若他第1球投不进,则第2球投进的概率为23.若他第1球投进概率为13,他第2球投进的概率为( )23发布:2024/12/29 12:0:2组卷:313引用:5难度:0.7 -
3.某市在市民中发起了无偿献血活动,假设每个献血者到达采血站是随机的,并且每个献血者到达采血站和其他的献血者到达采血站是相互独立的.在所有人中,通常45%的人的血型是O型,如果一天内有10位献血者到达采血站献血,用随机模拟的方法来估计一下,这10位献血者中至少有4位的血型是O型的概率.
发布:2024/12/29 11:0:2组卷:1引用:1难度:0.7