已知△ABC中,如果过顶点B的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的二分割线.例如:如图1,Rt△ABC中∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,若∠DBC=20°,显然直线BD是△ABC的关于点B的二分割线.

(1)在图2的△ABC中,∠C=20°,∠ABC=110°,请在图2中画出△ABC关于点B的二分割线,且∠DBC角度是20°20°.
(2)已知∠C=20°,在图3中画出不同于图1,图2的△ABC,所画△ABC同时满足:
①∠C为最小角;
②存在关于点B的二分割线,∠BAC的度数是35°或45°35°或45°.
(3)已知∠C=a,△ABC同时满足:
①∠C为最小角;
②存在关于点B的二分割线,请求出∠BAC的度数(用a表示).
【考点】三角形综合题.
【答案】20°;35°或45°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/17 8:0:9组卷:584引用:5难度:0.3
相似题
-
1.在Rt△ABC中,∠BAC=90°,AB=AC.
(1)如图1,若BM⊥AN于点M,CN⊥AN于点N,求证:CN=AM.
(2)如图2,点A,B分别在y轴和x轴上,直角边AC交x轴于点D,斜边BC交y轴于点E,若C点的横坐标为-2,直接写出点A的坐标.
(3)如图3,若B(-5,0),以OA为直角边在第一象限作Rt△AOD,且AD=AO,连接CD交y轴于P,问当点A在y轴的正半轴上运动时,AP的长度是否变化?若变化,请说明理由,若不变化,求出AP的长度.发布:2025/6/13 3:30:1组卷:40引用:1难度:0.3 -
2.如图1,已知,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D在AB上且
,点P,Q分别从点D,B出发沿线段DB,BC向终点B,C匀速移动,P,Q两点同时出发,同时到达终点.设BQ=x,AP=y.BD=154
(1)求AD的值.
(2)求y关于x的函数表达式.
(3)如图2,过点P作PE⊥AC于点E,连结PQ,EQ.
①当△PEQ为等腰三角形时,求x的值.
②过D作DF⊥BC于点F,作点F关于EQ的对称点F',当点F'落在△PQB的内部(不包括边界)时,则x的取值范围为 .发布:2025/6/13 1:30:1组卷:84引用:3难度:0.1 -
3.问题背景:如图1,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,求证:BD=CE.
尝试运用:如图2,在等边△ABC中,P是△ABC外的一点,∠APB=15°,BP=9,AP=3,求CP的长度.2
拓展创新:如图3,在△ABC中,AB=AC=16,∠BAC=120°,O是BC的中点,点E是△ABC内的一动点,OE=2,将线段AE绕点A逆时针旋转120°得到AF,连接AF,请直接写出当OF的长度最小时,AE的长度为 .3发布:2025/6/13 4:30:2组卷:184引用:1难度:0.2