[问题情境]
(1)王老师给爱好学习的小明和小颖提出这样一个问题:如图①,在△ABC中,AB=AC,P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小明的证明思路是:
如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小颖的证明思路是:
如图②,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
请你选择小明、小颖两种证明思路中的任意一种,写出详细的证明过程.
[变式探究](2)如图③,当点P在BC延长线上时,问题情境中,其余条件不变,求证:PD-PE=CF.

[结论运用](3)如图④,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C'处,点P为折痕EF上的任一点,过点P作PG⊥BE,PH⊥BG,垂足分别为G,H,若AD=8,CF=3,求PG+PH的值.
[迁移拓展](4)图⑤是一个机器模型的截面示意图,在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D,C,且AD•CE=DE•BC,AB=213cm,AD=3cm,BD=37cm,MN分别为AE,BE的中点,连接DM,CN,请直接写出△DEM与△CEN的周长之和.

13
37
【考点】相似形综合题.
【答案】(1)证明见解析部分;
(2)证明见解析部分;
(3)4;
(4)(6+2)dm.
(2)证明见解析部分;
(3)4;
(4)(6+2
13
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:277引用:1难度:0.1
相似题
-
1.已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,E是上底AD的中点,P是腰AB上一动点,连接PE并延长,交射线CD于点M,作EF⊥PE,交下底BC于点F,连接MF交AD于点N,连接PF,AB=AD=4,BC=6,点A、P之间的距离为x,△PEF的面积为y.
(1)当点F与点C重合时,求x的值;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)当∠CMF=∠PFE时,求△PEF的面积.发布:2025/1/28 8:0:2组卷:240引用:1难度:0.5 -
2.【阅读】“关联”是解决数学问题的重要思维方式,角平分线的有关联想就有很多……
(1)【问题提出】如图①,PC是△PAB的角平分线,求证.PAPB=ACBC小明思路:关联“平行线、等腰三角形”,过点B作BD∥PA,交PC的延长线于点D,利用“三角形相似”.
小红思路:关联“角平分线上的点到角的两边的距离相等”,过点C分别作CD⊥PA交PA于点D,作CE⊥PB交PB于点E,利用“等面积法”.
(2)【理解应用】填空:如图②,Rt△ABC中,∠B=90°,BC=3,AB=4,CD平分∠ACB交AB于点D,则BD长度为 ;
(3)【深度思考】如图③,在Rt△ABC中,∠BAC=90°,D是边BC上一点,连接AD,将△ACD沿AD所在直线折叠点C恰好落在边AB上的E点处.若AC=1,AB=2,则DE的长为 ;
(4)【拓展升华】如图④,△ABC中,AB=6,AC=4,AD为∠BAC的角平分线,AD的垂直平分线EF交BC延长线于F,连接AF,当BD=3时,AF的长为 .发布:2025/1/28 8:0:2组卷:353引用:1难度:0.1 -
3.【感知】如图①,在Rt△ABC中,∠ACB=90°,D、E分别是边AC、BC的中点,连接DE.则△CDE与△CAB的面积比为.
【探究】将图①的△CDE绕着点C按顺时针方向旋转一定角度,使点E落在△ABC内部,连接AD、BE,并延长BE分别交AC、AD于点O、F,其它条件不变,如图②.
(1)求证:△ACD∽△BCE.
(2)求证:AD⊥BF.
【应用】将图②的△CDE绕着点C按顺时针方向旋转,使点D恰好落在边BC的延长线上,连接AD、BE,BE的延长线交AD于点F,其它条件不变,如图③,若AC=4,BC=3,则BF的长为.发布:2025/1/28 8:0:2组卷:302引用:1难度:0.1