如图F1、F2为椭圆C:x2a2+y2b2=1的左、右焦点,D、E是椭圆的两个顶点,椭圆的离心率e=32,S△DEF2=1-32.若点M(x0,y0)在椭圆C上,则点N(x0a,y0b)称为点M的一个“椭点”,直线l与椭圆交于A、B两点,A、B两点的“椭点”分别为P、Q.
(1)求椭圆C的标准方程;
(2)问是否存在过左焦点F1,的直线l,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
x
2
a
2
y
2
b
2
3
2
3
2
x
0
a
y
0
b
【考点】直线与圆锥曲线的综合.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:126引用:7难度:0.1
相似题
-
1.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:114引用:1难度:0.9 -
2.已知点M,N的坐标分别是(0,2)和(0,-2),点P是二次函数的图象上的一个动点.y=18x2
(1)判断以点P为圆心,PM为半径的圆与直线y=-2的位置关系,并说明理由;
(2)设直线PM与二次函数的图象的另一个交点为Q,连接NP,NQ,求证:∠PNM=∠QNM;y=18x2
(3)过点P,Q分别作直线y=-2的垂线,垂足分别为H,R,取RH中点为E,求证:QE⊥PE.发布:2025/9/12 23:30:1组卷:12引用:1难度:0.1 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7

