阅读材料:
求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2,
得2S=2+22+23+24+25+…+22013+22014.
将下式减去上式,得2S-S=22014一1
即S=22014一1,
即1+2+22+23+24+…+22013=22014一1
仿照此法计算:
(1)1+3+32+33+…+3100
(2)1+12+122+123+…+12100.
1
2
+
1
2
2
+
1
2
3
1
2
100
【考点】整式的混合运算.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:2714引用:13难度:0.3