阅读下列材料,并解答后面的问题.
在学习了直角三角形的边角关系后,小颖和小明两个学习小组继续探究任意锐角三角形的边角关系:在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.

(1)小明学习小组发现如下结论:
如图1,过A作AD⊥BC于D,则sinB=ADc,sinC=ADb,即AD=csinB,AD=bsinC,于是 csinBcsinB=bsinCbsinC,即bsinB=csinC,同理有csinC=asinA,asinA=bsinB,
则有asinA=bsinB=csinC.
(2)小颖学习小组则利用圆的有关性质也得到了类似的结论:
如图2,△ABC的外接圆半径为R,连接CO并延长交⊙O于点D,连接DB,则∠D=∠A,
∵CD为⊙O的直径,
∴∠DBC=90°,
在Rt△DBC中,
∵sinD=BCDC=a2R,
∴sinA=a2R,即asinA=2R,
同理:bsinB=2R,csinC=2R,
则有asinA=bsinB=csinC=2R,
请你将这一结论用文字语言描述出来:在一个锐角三角形中,各边和它们的对角的正弦值的比值都相等,等于它的外接圆的直径在一个锐角三角形中,各边和它们的对角的正弦值的比值都相等,等于它的外接圆的直径.
小颖学习小组在证明过程中略去了“bsinB=2R,csinC=2R”的证明过程,请你把“bsinB=2R,”的证明过程补写出来.
(3)直接用前面阅读材料中得出的结论解决问题
规划局为了方便居民,计划在三个住宅小区A、B、C之间修建一座学校,使它到三个住宅小区的距离相等,已知小区C在小区B的正东方向3千米处,小区A在小区B的东北方向,且A与C之间相距2千米,求学校到三个小区的距离及小区A在小区C的什么方向?
AD
c
AD
b
b
sin
B
c
sin
C
c
sin
C
a
sin
A
a
sin
A
b
sin
B
a
sin
A
b
sin
B
c
sin
C
BC
DC
=
a
2
R
a
2
R
a
sin
A
b
sin
B
c
sin
C
a
sin
A
=
b
sin
B
=
c
sin
C
b
sin
B
c
sin
C
b
sin
B
3
2
【考点】圆的综合题.
【答案】csinB;bsinC;在一个锐角三角形中,各边和它们的对角的正弦值的比值都相等,等于它的外接圆的直径
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:295引用:2难度:0.4
相似题
-
1.如图,AB是圆O的直径,弦CD⊥AB于G,射线DO与直线CE相交于点E,直线DB与CE交于点H,且∠BDC=∠BCH.
(1)求证:直线CE是圆O的切线.
(2)如图1,若OG=BG,BH=1,直接写出圆O的半径;
(3)如图2,在(2)的条件下,将射线DO绕D点逆时针旋转,得射线DM,DM与AB交于点M,与圆O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.发布:2025/1/28 8:0:2组卷:782引用:2难度:0.1 -
2.如图,AB是圆O的直径,AB=6,D是半圆ADB上的一点,C是弧BD的中点.
(1)若∠ABD=30°,求BC的长和由弦BC、BD、和弧CD围成的图形面积;
(2)若弧AD的度数是120度,在半径OB上是否存在点P,使得PC+PD的值最小,如果存在,请在备用图中画出P的位置,并求PC+PD的最小值,如果不存在,请说明理由.发布:2025/1/28 8:0:2组卷:44引用:0难度:0.3 -
3.如图,AB是圆O的直径,弦CD与AB交于点H,∠BDC=∠CBE.
(1)求证:BE是圆O的切线;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的长;
(3)如图,若CD∥BE,作DF∥BC,满足BC=2DF,连接FH、BF,求证:FH=BF.发布:2025/1/28 8:0:2组卷:100引用:1难度:0.1