定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=a+ca,y=b+db,那么称点T是点A,B的伴A融合点,例如:A(-1,1),B(4,-2),当点T(x,y)满足x=-1+4-1=-3,y=1+(-2)1=-1时,则点T(-3,-1)是点A,B的伴A融合点.
(1)已知点D(-1,5),E(-1,3),F(2,10).请说明其中一个点是另外两个点的伴哪个点的融合点;
(2)如图,点Q是直线y=2x上且在第三象限的一动点,点P是抛物线y=x2上一动点,点T(x,y)是点Q,P的伴Q融合点;
①所有的点T(x,y)中是否存在最高点?若存在,求出最高点坐标,如不存在,请说明理由.
②若当点Q运动到某个位置时,在点P的运动过程中恰好有两个点T(x,y)(T1(x1,y1),T2(x2,y2))落在抛物线y=x2上,则记|x1-x2|为点T1,T2的水平宽度.若1<|x1-x2|<2,求点Q运动的范围(可用点Q的横坐标的范围表示).
a
+
c
a
b
+
d
b
-
1
+
4
-
1
1
+
(
-
2
)
1
【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:811引用:5难度:0.2
相似题
-
1.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)直接填写:a=,b=,顶点C的坐标为;
(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.发布:2025/6/17 23:30:2组卷:163引用:1难度:0.4 -
2.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.
(1)求抛物线的解析式;
(2)求点P在运动的过程中线段PD长度的最大值;
(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.发布:2025/6/18 0:30:4组卷:1978引用:7难度:0.2 -
3.如图,抛物线y=ax2-3ax+b与直线AB交于A(-2,
)、B(4,0)两点,点C是此抛物线上的一个动点,过点C作CD⊥x轴,交直线AB于点D.32
(1)求此抛物线的解析式;
(2)如图①,当点C在直线AB下方的抛物线上运动时,请求出线段CD长度的最大值;
(3)如图②,以D为圆心,CD的长为半径作⊙D.当⊙D与x轴相切时,请直接写出点C的横坐标.发布:2025/6/17 22:30:1组卷:63引用:1难度:0.2