已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;
②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.

【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/22 18:0:1组卷:1557引用:21难度:0.5
相似题
-
1.直线CD经过∠BCA的顶点C,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,则EF |BE-AF|(填“>”,“<”或“=”号);
②如图2,若0°<∠BCA<180°,若使①中的结论仍然成立,则∠α与∠BCA应满足的关系是 ;
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请探究EF、与BE、AF三条线段的数量关系,并给予证明.发布:2025/6/22 21:0:10组卷:857引用:10难度:0.5 -
2.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是
发布:2025/6/22 21:30:2组卷:2346引用:61难度:0.5 -
3.如图,AD∥BC,∠A=90°,以点B为圆心、BC长为半径作弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F.求证:AB=FC.
发布:2025/6/22 21:0:10组卷:61引用:4难度:0.6