如图,已知椭圆Γ:x2a2+y2b2=1的离心率为22,A(-2,0)点为其左顶点.过A的直线l交抛物线y2=2px(p>0)于B、C两点,C是AB的中点.
(1)求椭圆Γ的方程;
(2)求证:点C的横坐标是定值,并求出该定值;
(3)若直线m过C点,其倾斜角和直线l的倾斜角互补,且交椭圆于M,N两点,求p的值,使得△BMN的面积最大.
x
2
a
2
+
y
2
b
2
=
1
2
2
【答案】(1)+=1.
(2)证明详情见解答.
(3)p=.
x
2
4
y
2
2
(2)证明详情见解答.
(3)p=
9
28
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/4 8:0:8组卷:133引用:3难度:0.6
相似题
-
1.设椭圆
+x2a2=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为y2b2,|AB|=53.13
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,直线l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.发布:2024/12/29 12:30:1组卷:4579引用:26难度:0.3 -
2.已知椭圆C:
=1(a>b>0)的一个顶点坐标为A(0,-1),离心率为x2a2+y2b2.32
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=k(x-1)(k≠0)与椭圆C交于不同的两点P,Q,线段PQ的中点为M,点B(1,0),求证:点M不在以AB为直径的圆上.发布:2024/12/29 12:30:1组卷:372引用:4难度:0.5 -
3.如果椭圆
的弦被点(4,2)平分,则这条弦所在的直线方程是( )x236+y29=1发布:2024/12/18 3:30:1组卷:460引用:3难度:0.6