当前位置:
试题详情
已知方程(m2-2m-3)x+(2m2+m-1)y-2-2m=0(m∈R).
(1)求该方程表示一条直线的条件;
(2)当m为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;
(3)已知方程表示的直线l在x轴上的截距为-3,求实数m的值;
(4)若方程表示的直线l的倾斜角是45°,求实数m的值;
【考点】直线的一般式方程与直线的性质;直线的倾斜角.
【答案】(1){m|m≠-1}.
(2)x=-.
(3).
(4).
(2)x=-
4
5
(3)
7
3
(4)
4
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/23 20:38:36组卷:27引用:2难度:0.7
相似题
-
1.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点为A(0,0),B(5,0),C(2,4),则该三角形的欧拉线方程为( )
发布:2024/11/12 21:0:2组卷:736引用:10难度:0.5 -
2.已知0<k<4直线L:kx-2y-2k+8=0和直线M:2x+k2y-4k2-4=0与两坐标轴围成一个四边形,则这个四边形面积最小值时k值为( )
发布:2024/12/29 2:0:1组卷:325引用:7难度:0.7 -
3.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点为A(0,0),B(5,0),C(2,4),则该三角形的欧拉线方程为( )
注:重心坐标公式为横坐标:;纵坐标:x1+x2+x33y1+y2+y33发布:2024/10/25 1:0:1组卷:71引用:1难度:0.6