如图,为了迎接亚运会,某公园修建了三条围成一个直角三角形的观光大道AB,BC,AC,其中直角边BC=200m,斜边AB=400m,现有一个旅游团队到此旅游,甲、乙、丙三位游客分别在AB,BC,AC这三条观光大道上行走游览.
(1)若甲以每分钟40m的速度、乙以每分钟120m的速度都从点B出发在各自的大道上奔走,乙比甲迟2分钟出发,当乙出发1分钟后到达E,甲到达D,求此时甲、乙两人之间的距离;
(2)甲、乙、丙所在位置分别记为点D,E,F.设∠CEF=θ,乙、丙之间的距离是甲、乙之间距离的2倍,且∠DEF=π3,请将甲、乙之间的距离y表示为θ的函数,并求甲、乙之间的最小距离.
∠
DEF
=
π
3
【考点】解三角形;根据实际问题选择函数类型.
【答案】(1)120m;
(2).
(2)
y
=
50
3
sin
(
θ
+
π
3
)
,
0
≤
θ
≤
π
2
,
50
3
m
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/1 8:0:8组卷:30引用:3难度:0.6
相似题
-
1.已知灯塔A在海洋观察站C的北偏东65°,距离海洋观察站C的距离为akm,灯塔B在海洋观察站C的南偏东55°,距离海洋观察站C的距离为3akm,则灯塔A与灯塔B的距离为( )
发布:2024/12/30 4:0:3组卷:50引用:3难度:0.7 -
2.在①
,②2a-c=2bcosC,③(a-b)(a+b)=(a-c)c这三个条件中任选一个,补充在下面的问题中,并解答该问题.3(a-bcosC)=csinB
在△ABC中,内角A,B,C的对边分别是a,b,c,且满足 _____,.b=23
(1)若a+c=4,求△ABC的面积;
(2)求△ABC周长l的取值范围.发布:2024/12/29 13:0:1组卷:280引用:4难度:0.5 -
3.如图,在铁路建设中,需要确定隧道两端的距离(单位:百米),已测得隧道两端点A,B到某一点C的距离分别为5和8,∠ACB=60°,则A,B之间的距离为( )
发布:2024/12/29 13:0:1组卷:294引用:5难度:0.7