下面是某数学兴趣小组探究用不同方法作一条线段的垂直平分线的讨论片段,请仔细阅读,并完成相应任务.
小晃:如图1,(1)分别以A,B为圆心,大于 1 2 简述作图理由: 由作图可知,PA=PB,所以点P在线段AB的垂直平分线上,∠PAB=∠PBA,因为AD,BC分别是∠PAB,∠PBA的平分线,所以∠DAB=∠CBA,所以AE=BE,所以点E在线段AB的垂直平分线上,所以PE是线段AB的垂直平分线. 小航:我认为小晃的作图方法很有创意,但是可以改进如下,如图2,(1)分别以A,B为圆心,大于 1 2 … |

任务:
(1)小晃得出点P在线段AB的垂直平分线上的依据是
到线段两端点距离相等的点在这条线段的垂直平分线上
到线段两端点距离相等的点在这条线段的垂直平分线上
;(2)小航作图得到的直线PE是线段AB的垂直平分线吗?请判断并说明理由;
(3)如图3,已知∠P=30°,PA=PB,AB=
6
【考点】三角形综合题.
【答案】到线段两端点距离相等的点在这条线段的垂直平分线上
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/9 17:0:1组卷:489引用:6难度:0.3
相似题
-
1.(1)阅读理解:
如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是;
(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.发布:2025/6/17 11:0:1组卷:624引用:7难度:0.4 -
2.如图,三角形ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).
(1)求三角形OAB的面积;
(2)若O,B两点的位置不变,点M在x轴上,则点M在什么位置时,三角形OBM的面积是三角形OAB的面积的2倍?
(3)若O,A两点的位置不变,点N由点B向上或向下平移得到,则点N在什么位置时,三角形OAN的面积是三角形OAB的面积的2倍?发布:2025/6/17 6:30:2组卷:331引用:2难度:0.3 -
3.如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
(1)求证:AD=BE;
(2)求∠AEB的度数;
(3)探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM⊥DE于点M,连接BE.
①∠AEB的度数为 °;
②线段DM,AE,BE之间的数量关系为 .(直接写出答案,不需要说明理由)发布:2025/6/17 6:0:2组卷:365引用:3难度:0.6