阅读材料:
例 分解因式x2+6x-7.
解:原式=x2+2x×3+32-32-7
=(x2+2x×3+32)-32-7
=(x+3)2-42
=(x+3+4)(x+3-4)
=(x+7)(x-1).
上述例子用到了“在式子变形中,先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫配方法”.请根据这种方法解答下列问题:
分解因式:
(1)a2-6a-16;
(2)4a2-16ab+15b2.
【考点】因式分解-十字相乘法等;完全平方式.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:789引用:4难度:0.3
相似题
-
1.当k=时,二次三项式x2+kx-12分解因式的结果是(x+4)(x-3).
发布:2024/11/3 18:0:1组卷:532引用:4难度:0.6 -
2.已知多项式ax2+bx+c,其因式分解的结果是(x+1)(x-4),则abc的值为( )
发布:2024/12/28 3:0:3组卷:130引用:2难度:0.8 -
3.李伟课余时间非常喜欢研究数学,在一次课外阅读中遇到一个解一元二次不等式的问题:x2-2x-3>0.
经过思考,他给出了下列解法:
解:左边因式分解可得:(x+1)(x-3)>0,或x+1>0x-3>0,x+1<0x-3<0
解得x>3或x<-1.
聪明的你,请根据上述思想求一元二次不等式的解集:(x-1)(x-2)(x-3)>0.发布:2024/12/23 9:30:1组卷:1568引用:3难度:0.1