如图所示,图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b.斜边长为c.图(2)是以c为直角边的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.
(1)在作图区画出拼成的这个图形的示意图,写出它是什么图形.
(2)用这个图形证明勾股定理.

(3)假设现在有一个正方形和若干个全等的直角三角形,且正方形的边长与直角三角形的斜边相等,你能拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图.(无需证明)
【答案】见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/26 8:0:9组卷:54引用:2难度:0.6
相似题
-
1.如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个直角梯形(两底分别为a、b,高为a+b),利用这个图形,小明验证了勾股定理.请你填写计算过程中留下的空格:
S梯形=(上底+下底)•高=12(a+b)•(a+b),即S梯形=12()①12
S梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表示相应图形的面积)
=++,即S梯形=()②12
由①、②,得a2+b2=c2.发布:2025/6/17 20:30:2组卷:305引用:2难度:0.7 -
2.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是( )
发布:2025/6/17 19:30:1组卷:3427引用:3难度:0.5 -
3.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则
的值是( )S正方形ABCDS正方形EFGH发布:2025/6/17 22:0:1组卷:5295引用:33难度:0.6