如图1,在矩形ABCD中,AB=5,BC=4,动点P以每秒1个单位的速度,从点A出发.按A→B→C→D的顺序在边上运动.与点P同时出发的动点Q以每秒12个单位的速度,从点D出发,在射线DC上运动.当动点P运动到点D时,动点P、Q都停止运动.在运动路径上,设点P的运动时间为t秒,此时点P、点B之间的路径距离与点P、点C之间的路径距离之和为y1,动点Q的运动路程为y2.

(1)分别求出y1,y2与t之间的函数关系式,并写出自变量t的取值范围;
(2)在如图2的平面直角坐标系中,画出为y1,y2的函数图象,并根据图象写出函数y1的一条性质:当0≤t≤5时,y1随x的增大而减小;当5<t≤9时,y1不变是4;当9<t≤14时,y1随x的增大而增大当0≤t≤5时,y1随x的增大而减小;当5<t≤9时,y1不变是4;当9<t≤14时,y1随x的增大而增大.
(3)根据图象直接写出当y2+1≥y1时,t的取值范围 6≤t≤106≤t≤10.
1
2
【考点】四边形综合题.
【答案】当0≤t≤5时,y1随x的增大而减小;当5<t≤9时,y1不变是4;当9<t≤14时,y1随x的增大而增大;6≤t≤10
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/22 7:30:2组卷:636引用:3难度:0.1
相似题
-
1.如图1和图2,在四边形ABCD中,AB=CD=6,AD=2,BC=8,∠B=∠C=60°,点K在CD边上,点M,N分别在AB,BC边上,且AM=CN=2,点P从点M出发沿折线MB-BN匀速运动,点E在CD边所在直线上随P移动,且始终保持∠MPE=∠B;点Q从点D出发沿DC匀速运动,点P,Q同时出发,点Q的速度是点P的一半,点P到达点N停止,点Q随之停止.设点P移动的路程为x.
(1)当x=5时,求PN的长;
(2)当MP⊥BC时,求x的值;
(3)用含x的式子表示QE的长;
(4)已知点P从点M到点B再到点N共用时20秒,若,请直接写出点K在线段QE上(包括端点)的总时长.CK=154发布:2025/5/22 10:30:1组卷:224引用:2难度:0.1 -
2.定义:我们把对角线相等的凸四边形叫做“等角线四边形”.
(1)在已经学过的“①平行四边形;②矩形;③菱形;④正方形“中,一定是“等角线四边形”的是 (填序号);
(2)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,且EC=DF,连接EF,AF,求证:四边形ABEF是等角线四边形;
(3)如图2,△ABC中,∠ABC=90°,AB=4,BC=3,D为线段AB的垂直平分线上一点,若以点A,B,C,D为顶点的四边形是等角线四边形,求这个等角线四边形的面积.发布:2025/5/22 9:0:1组卷:478引用:1难度:0.3 -
3.在数学兴趣小组活动中,同学们对矩形的折叠问题进行了探究.在矩形ABCD中,AB=6,AD=3,E是AB边上一点,AE=2,F是直线CD上一动点,以直线EF为对称轴,点A关于直线EF的对称点为A'.
(1)如图(1),求四边形AEA'F的面积.
(2)如图(2),连接CE,当点A'落在直线CE上时,求tan∠CFA'的值.
(3)当点F,A',B三点在一条直线上时,则DF的长度为 .发布:2025/5/22 9:0:1组卷:225引用:1难度:0.1