试卷征集
加入会员
操作视频

在平面直角坐标系中,△AOB为等边三角形,B(2,0),直线l:y=kx+b经过点B,点C是x轴正半轴上的一动点,以线段AC为边在第一象限作等边△ACD.
(1)直接写出点A的坐标:A(
1
1
3
3
),当直线l经过点A时,求直线BA的表达式.
(2)当直线l经过点D时,直线与y轴相交于点F,随着点C的变化,点F的位置是否发生变化?若没有变化,求出此时点F的坐标.;若有变化,请说明理由.
(3)当直线与线段OA相交于点E时,如果直线l把△AOB的面积分为1:2两部分,求出此时点E的坐标.
(4)若点C的坐标为(4,0)时,直线l与线段AD有交点,请直接写出此时k的取值范围.

【考点】一次函数综合题
【答案】1;
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1181引用:2难度:0.1
相似题
  • 1.如图,在平面直角坐标系中,直线y=-
    1
    2
    x+3与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.

    (1)求证:△BOC≌△CED;
    (2)求点D的坐标;
    (3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.

    发布:2025/6/10 1:0:1组卷:1027引用:3难度:0.4
  • 2.如图,在平面直角坐标系中,直线y1=kx+b(k≠0)经过点A(7,0)和点C(3,4),直线y2=mx(m≠0)经过原点O和点C.
    (1)求直线y1=kx+b(k≠0)和直线y2=mx(m≠0)的解析式;
    (2)点D是射线OA上一动点,点O关于点D的对称点为点E,过D点作DG⊥x轴,交直线OC于点G,以DE,DG为邻边作矩形DEFG.
    ①当点F落在直线AC上时,求出OD的长;
    ②当△OAF为等腰三角形时.直接写出点D的坐标.

    发布:2025/6/10 2:0:5组卷:235引用:1难度:0.2
  • 3.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(-
    4
    3
    ,4),△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.
    (1)求直线BD的解析式;
    (2)求△BOH的面积;
    (3)点M在x轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

    发布:2025/6/10 2:0:5组卷:1723引用:3难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正