试卷征集
加入会员
操作视频

某超市经销一种商品,每千克成本为60元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售价,销售量的四组对应值如下表所示:
销售单价x(元/千克) 65 70 75 80
销售量y(千克) 70 60 50 40
(1)求y(千克)与x(元/千克)之间的函数表达式;
(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?
(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?

【答案】(1)y=-2x+200;
(2)销售单价应定为70或90时,获得600元的销售利润;
(3)当销售单价定为80元/千克时,才能使当天的销售利润最大,最大利润是800元.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/10 13:30:2组卷:153引用:2难度:0.5
相似题
  • 1.为响应政府“节能”号召,某照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯.已知这种节能灯的出厂价为每个15元.某商场试销发现:销售单价定为20元/个,每月销售量为350个;每涨价1元,每月少卖10个.
    (1)设涨价x(元)时,每月销售量为y(个),求出y与x之间的函数关系式,并写出自变量的取值范围;
    (2)设该商场每月销售这种节能灯获得利润为w(元),当涨价多少元时,每月可获得最大利润?最大利润是多少?

    发布:2025/6/13 6:0:2组卷:193引用:5难度:0.6
  • 2.某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为13m,另外三面用棚栏围成,中间再用棚栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).
    (1)若矩形养殖场的总面积为36m2,求此时x的值;
    (2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?

    发布:2025/6/13 4:0:2组卷:520引用:3难度:0.6
  • 3.温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.
    (1)根据信息填表:
    产品种类 每天工人数(人) 每天产量(件) 每件产品可获利润(元)
    15
    x x
    (2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.
    (3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.

    发布:2025/6/13 1:0:1组卷:4922引用:18难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正