根据以下素材,探索完成任务.
如何设计喷水装置的高度? | ||||
素材1 | 图1为某公园的圆形喷水池,图2是其示意图,O为水池中心,喷头A、B之间的距离为20米,喷射水柱呈抛物线形,水柱距水池中心7m处达到最高,高度为5m.水池中心处有一个圆柱形蓄水池,其底面直径CD为12m,高CF为1.8米. | |||
![]() |
![]() |
|||
素材2 | 如图3,拟在圆柱形蓄水池中心处建一喷水装置OP (OP⊥CD),并从点P向四周喷射与图2中形状相同的抛物线形水柱,且满足以下条件: ①水柱的最高点与点P的高度差为0.8m; ②不能碰到图2中的水柱; ③落水点G,M的间距满足:GM:FM=2:7. |
![]() |
||
问题解决 | ||||
任务1 | 确定水柱形状 | 在图2中以点O为坐标原点,水平方向为x轴建立直角坐标系,并求左边这条抛物线的函数表达式. | ||
任务2 | 探究落水点位置 | 在建立的坐标系中,求落水点G的坐标. | ||
任务3 | 拟定喷水装置的高度 | 求出喷水装置OP的高度. |
【考点】二次函数综合题.
【答案】(1)y=-(x+7)2+5;
(2)点G的坐标为:(-4.2,1.8);
(3)OP=6.
5
9
(2)点G的坐标为:(-4.2,1.8);
(3)OP=6.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:756引用:3难度:0.3
相似题
-
1.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2-8ax+8交x轴于A,B两点,交y轴于点C,且OC=2OA.
(1)求抛物线的解析式;
(2)连接AC,点D是线段AC上的一个动点,过点D作DE⊥x轴于点E.在线段OB上截取BF=DE,过点F作FG⊥x轴,交抛物线于点G,设点D的横坐标为t,点G的纵坐标为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,点H是AD的中点,连接EH,FH,CG,过点C作CK∥EH,交线段FH于点K,连接GK,若FK=CD,求tan∠CGK的值.发布:2025/5/23 0:30:1组卷:155引用:2难度:0.1 -
2.已知二次函数y=ax2+bx+c(a≠0).
(1)若a=-1,且函数图象经过(0,3),(2,-5)两点,求此二次函数的解析式;并根据图象直接写出函数值y≥3时自变量x的取值范围;
(2)在(1)的条件下,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,求m的值.
(3)已知a=b=c=1,当x=p,q(p,q是实数,p≠q)时,该函数对应的函数值分别为P,Q.若p+q=2,求证P+Q>6.发布:2025/5/23 0:0:1组卷:356引用:1难度:0.2 -
3.抛物线
与x轴交于A(b,0),B(4,0)两点,与y轴交于点C(0,c),点P是抛物线在第一象限内的一个动点,且在对称轴右侧.y=-12x2+(a-1)x+2a
(1)求a,b,c的值;
(2)如图1,连接BC、AP,交点为M,连接PB,若,求点P的坐标;S△PMBS△AMB=14
(3)如图2,在(2)的条件下,过点P作x轴的垂线交x轴于点E,将线段OE绕点O逆时针旋转得到OE,旋转角为α(0°<α<90°),连接EB,E′C,求的最小值.E′B+34E′C
发布:2025/5/23 0:0:1组卷:643引用:1难度:0.2