如图,在三角形ABC中,∠ACB=90°,AB=10,AC=8,点D、点E分别为线段AC、AB上的点,连结DE.将△ADE沿DE折叠,使点A落在BC的延长线上的点F处,此时恰好有∠BFE=30°,则CF的长度为 403-4813403-4813.
40
3
-
48
13
40
3
-
48
13
【考点】翻折变换(折叠问题);勾股定理.
【答案】
40
3
-
48
13
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/10 6:0:2组卷:446引用:3难度:0.6
相似题
-
1.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.E为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称点B'落在CD的延长线上.若AB=10,BC=8,则△ACE的面积为 .
发布:2025/6/10 13:30:2组卷:162引用:3难度:0.2 -
2.如图,矩形ABCD中,AB=CD=x,AD=BC=y,把它折叠起来,使顶点A与C重合,则折痕PQ的长度为( )
发布:2025/6/10 13:30:2组卷:189引用:3难度:0.9 -
3.如图,在矩形ABCD中,AB=4,BC=
,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若tan∠BAF=5,则CE=.12发布:2025/6/10 12:0:6组卷:3084引用:7难度:0.3