阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.
例题:求多项式x2-4x+5的最小值.
解:x2-4x+5=x2-4x+4+1=(x-2)2+1,
因为(x-2)2≥0,所以(x-2)2+1≥1.
当x=2时,(x-2)2+1=1.因此(x-2)2+1有最小值,最小值为1,即x2-4x+5的最小值为1.
通过阅读,理解材料的解题思路,请解决以下问题:
(1)【理解探究】
已知代数式A=x2+10x+20,则A的最小值为 -5-5;
(2)【类比应用】
张大爷家有甲、乙两块长方形菜地,已知甲菜地的两边长分别是(3a+2)米、(2a+5)米,乙菜地的两边长分别是5a米、(a+5)米,试比较这两块菜地的面积S甲和S乙的大小,并说明理由;
(3)【拓展升华】
如图,△ABC中,∠C=90°,AC=5cm,BC=10cm,点M、N分别是线段AC和BC上的动点,点M从A点出发以1cm/s的速度向C点运动;同时点N从C点出发以2cm/s的速度向B点运动,当其中一点到达终点时,两点同时停止运动,设运动的时间为t,则当t的值为多少时,△MCN的面积最大,最大值为多少?
【答案】-5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/12 8:0:9组卷:456引用:7难度:0.3
相似题
-
1.2022年2月8日北京冬奥会中自由滑雪空中技巧项目备受大家关注,中国优秀运动员沿跳台斜坡AB加速加速至B处腾空而起,沿抛物线BEF运动,在空中完成翻滚动作,着陆在跳台的背面着陆坡DC.建立如图所示的平面直角坐标系,BD∥x轴,C在x轴上,B在y轴上,已知跳台的背面DC近似是抛物线y=a(x-7)2(1≤x≤7)的一部分,D点的坐标为(1,6),抛物线BEF的表达式为y=b(x-2)2+k.
(1)当k=10时,求a、b的值;
(2)在(1)的条件下,运动员在离x轴3.75m处完成动作并调整好身姿,求此时他距DC的竖直距离(竖直距离指的是运动员所在位置的点向x轴的垂线与DC的交点之间线段的长);
(3)若运动员着落点与B之间的水平距离需要在不大于7m的位置(即着落点的横坐标x满足x≤7且b<0,),求b的取值范围.发布:2024/12/23 13:30:1组卷:356引用:4难度:0.4 -
2.如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.拱门上的点距地面的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x-h)2+k(a<0).
(1)拱门上的点的水平距离x与竖直高度y的几组数据如下:水平距离x/m 2 3 6 8 10 12 竖直高度y/m 4 5.4 7.2 6.4 4 0
(2)一段时间后,公园重新维修拱门.新拱门上的点距地面的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=-0.288(x-5)2+7.2,若记“原拱门”的跨度(跨度为拱门底部两个端点间的距离)为d1,“新拱门”的跨度为d2,则d1d2(填“>”“=”或“<”).发布:2024/12/23 11:30:2组卷:581引用:6难度:0.5 -
3.如图,已知梯形ABCD中,DC∥AB,∠A=90°,∠B=60°,AD=3,AB=
,DC=53,P是BC边上一点(P与B不重合),过点P作PQ⊥BC交AB于Q,设PB=x,四边形AQPD的面积为y.43
(1)求y与x的函数关系式;
(2)当x为何值时,y有最大值或最小值?其值等于多少?发布:2025/1/21 8:0:1组卷:31引用:1难度:0.5