阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S-S=22014-1
即S=22014-1
即1+2+22+23+24+…+22013=22014-1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
【考点】同底数幂的乘法.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:15482引用:81难度:0.3
相似题
-
1.计算:a2•a3=( )
发布:2024/12/22 22:0:4组卷:933引用:27难度:0.9 -
2.计算m•m7的结果等于 .
发布:2024/12/23 10:30:1组卷:949引用:8难度:0.8 -
3.我们知道,同底数幂的乘法法则为am•an=am+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数);例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.
(1)若f(2)=5,则:①计算f(6);②当f(2n)=25,求n的值;
(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).发布:2024/12/23 10:0:1组卷:1483引用:6难度:0.4