已知函数f(x)=12x2-(a+1a)x+lnx,其中a>0.
(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;
(Ⅱ)当a≠1时,求函数f(x)的单调区间;
(Ⅲ)若a∈(0,12),证明对任意x1,x2∈[12,1](x1≠x2),|f(x1)-f(x2)|x21-x22<12恒成立.
1
2
1
a
1
2
1
2
|
f
(
x
1
)
-
f
(
x
2
)
|
x
2
1
-
x
2
2
1
2
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:169引用:6难度:0.1