已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),记an=3f(n),n∈N*.
(1)求数列{an}的通项公式;
(2)设bn=an2n,Tn=b1+b2+…bn,若Tn<m(m∈Z),求m的最小值;
(3)求使不等式(1+1a1)(1+1a2)(1+1a2)…(1+1an)≥p2n+1对一切n∈N*,均成立的最大实数p.
b
n
=
a
n
2
n
(
1
+
1
a
1
)
(
1
+
1
a
2
)
(
1
+
1
a
2
)
…
(
1
+
1
a
n
)
p
2
n
+
1
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:107引用:5难度:0.1
相似题
-
1.已知一组2n(n∈N*)个数据:a1,a2,…,a2n,满足:a1≤a2≤…≤a2n,平均值为M,中位数为N,方差为s2,则( )
发布:2024/12/29 7:30:2组卷:54引用:4难度:0.5 -
2.已知点A
是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足(1,13)(n≥2).Sn-Sn-1=Sn+Sn-1
(1)求数列{an}与{bn}的通项公式.
(2)若数列的前n项和为Tn,问满足Tn{1bnbn+1}的最小整数是多少?>10002011
(3)若,求数列Cn的前n项和Pn.Cn=-2bnan发布:2025/1/12 8:0:1组卷:36引用:3难度:0.1 -
3.已知公比为q的正项等比数列{an},其首项a1>1,前n项和为Sn,前n项积为Tn,且函数f(x)=x(x+a1)(x+a2)⋯(x+a9)在点(0,0)处切线斜率为1,则( )
发布:2024/12/29 10:30:1组卷:35引用:3难度:0.5