试卷征集
加入会员
操作视频

已知抛物线y=ax2+bx+2经过点A(1,0)和点B(-3,0),与y轴交于点C,P为第二象限内抛物线上一点.
(1)求抛物线的解析式;
(2)如图,线段OP交BC于点D,若S△CPD:S△COD=m,求m的最大值;
(3)当BC平分∠PCO时,求点P的横坐标.

【考点】二次函数综合题
【答案】(1)y=-
2
3
x2-
4
3
x+2;
(2)m的最大值为
3
4

(3)点P的横坐标为-
11
8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/26 3:0:2组卷:369引用:2难度:0.3
相似题
  • 1.如图,开口向下的抛物线y=-
    3
    8
    (x-m)(x-2)与x轴正负半轴分别交于A、B点,与y轴交于C点,且AB=2OC;
    (1)直接写出A点坐标(
    ,0),并求m的值;
    (2)抛物线在第三象限内图象上是否存在一点E,在y轴负半轴上有一点F,使以点C、点E、点F为顶点的三角形与△BOC相似,如果存在,求出F点坐标,如果不存在,说明理由;
    (3)在线段BC上有一点P,连结PO、PA,若tan∠APO=
    1
    2
    ,则直接写出点P坐标(

    发布:2025/5/26 6:30:2组卷:746引用:1难度:0.1
  • 2.已知△ABC在平面直角坐标系中的位置如图所示,A点坐标为(-4,0),B点坐标为(6,0),点D为AC的中点,点E是抛物线在第二象限图象上一动点,经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8,连接DE,把点A沿直线DE翻折,点A的对称点为点G.
    (1)求抛物线的解析式;
    (2)当点E运动时,若点G恰好落在BC上(G不与B、C重合),求E点的坐标;
    (3)当点E运动时,若点B、C、D、G四点恰好在同一个圆上,求点E坐标.

    发布:2025/5/26 7:0:2组卷:253引用:1难度:0.2
  • 3.在平面直角坐标系中,抛物线经过点A(-2,0),B(-3,3)及原点O,顶点为C.
    (1)求该抛物线的函数表达式及顶点C的坐标;
    (2)设该抛物线上一动点P的横坐标为t.
    ①在图1中,当-3<t<0时,求△PBO的面积S与t的函数关系式,并求S的最大值;
    ②在图2中,若点P在该抛物线上,点E在该抛物线的对称轴上,且以A,O,P,E为顶点的四边形是平行四边形,求点P的坐标;
    ③在图3中,若P是y轴左侧该抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

    发布:2025/5/26 7:0:2组卷:163引用:1难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正