等腰Rt△BEF中,∠BEF=90°,BE=EF,先将△BEF绕正方形ABCD的顶点B旋转,再平移线段BE至AG位置,连接DF,GF.
(1)如图1,当点E落在BC上时,直接写出DF、GF的数量关系.
(2)如图2,当点E不在BC上时,(1)中的结论是否依然成立,若成立,请证明,若不成立,请说明理由;
(3)连接AE,若AB=25,BE=2,在△BEF绕点B旋转的过程中,当A、G、F三点共线时,直接写出线段AE的长度.

AB
=
2
5
【考点】四边形综合题.
【答案】(1)DF=GF;
(2)当点E不在BC上时,(1)中的结论依然成立,证明见解答;
(3)线段AE的长度为2或2.
2
(2)当点E不在BC上时,(1)中的结论依然成立,证明见解答;
(3)线段AE的长度为2
10
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/24 5:30:2组卷:272引用:2难度:0.2
相似题
-
1.如图,四边形ABCD中,∠A=∠B=90°,AD=2,AB=5,BC=3.
(1)如图①,P为AB上的一个动点,以PD,PC为边作▱PCQD.
①请问四边形PCQD能否成为矩形?若能,求出AP的长;若不能,请说明理由.
②填空:当AP=时,四边形PCQD为菱形;
③填空:当AP=时,四边形PCQD有四条对称轴.
(2)如图②,若P为AB上的一点,以PD,PC为边作▱PCQD,请问对角线PQ的长是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.发布:2025/5/24 11:0:1组卷:701引用:3难度:0.2 -
2.综合与实践
问题情境:在数学活动课上,老师让同学们以“矩形的折叠”为主题开展数学活动如图,矩形纸片ABCD中,点M、N分别是AD、BC的中点,点E、F分别在AB、CD上,且AE=CF.
动手操作:将△AEM沿EM折叠,点A的对应点为点P,将△NCF沿NF折叠,点C的对应点为点Q,点P、Q均落在矩形ABCD的内部,连接PN、QM.
问题解决:(1)判断四边形PNQM的形状,并证明;
(2)当AD=2AB=4,四边形PNQM为菱形时,求AE的长.发布:2025/5/24 11:30:1组卷:112引用:2难度:0.3 -
3.(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.求证:AE=FG;
(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;BCAB
(3)拓展应用:在(2)的条件下,连接CP,当时k=,若tan∠CGP=34,GF=243,求CP的长.5发布:2025/5/24 10:30:2组卷:3153引用:13难度:0.4
相关试卷