分层探究
(1)问题提出:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF.求证:EF=BE+DF,解题思路:把△ABE绕点A逆时针旋转9090度至△ADG,可使AB与AD重合.由∠FDG=∠ADG+∠ADC=180°,则知F、D、G三点共线,从而可证△AFG≌△AFE△AFE(SASSAS),从而得EF=BE+DF,阅读以上内容并填空.
(2)类比引申:如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.探究:若∠B、∠D都不是直角,当∠B、∠D满足什么数量关系时,仍有EF=BE+DF?
(3)联想拓展:如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,并且∠DAE=45°.猜想BD、CE、DE的数量关系,并给出理由.

【考点】四边形综合题.
【答案】90;△AFE;SAS
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:890引用:4难度:0.3
相似题
-
1.如图在平面直角坐标系中,A(-8,0),C(0,26),AB∥y轴且AB=24,点P从点A出发,以1个单位长度/s的速度向点B运动;点Q从点C同时出发,以2个单位长度/s的速度向点O运动,规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为t秒.
(1)当四边形BCQP是平行四边形时,求t的值;
(2)当PQ=BC时,求t的值;
(3)当PQ恰好垂直平分BO时,求t的值.发布:2025/6/8 22:30:1组卷:177引用:3难度:0.3 -
2.如图1,点E为正方形ABCD内一点,∠AEB=90°,现将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C),延长AE交CE′于点F.
(1)如图1,求证:四边形BEFE′是正方形;
(2)连接DE,
①如图2,若DA=DE,求证:F为CE′的中点;
②如图3,若AB=15,CF=3,试求DE的长.发布:2025/6/8 22:30:1组卷:532引用:2难度:0.4 -
3.如图,四边形ABCD中,已知∠BAC=∠BDC=90°,且AB=AC.
(1)求证:∠ABD=∠ACD;
(2)记△ABD的面积为S1,△ACD的面积为S2.
①求证:S1-S2=AD2;12
②过点B作BC的垂线,过点A作BC的平行线,两直线相交于M,延长BD至P,使得DP=CD,连接MP.当MP取得最大值时,求∠CBD的大小.发布:2025/6/8 23:0:1组卷:308引用:4难度:0.1