综合与实践
我们在没有量角器或三角尺的情况下,用折叠特殊矩形纸片的方法进行如下操作也可以得到几个相似的含有30°角的直角三角形.
实践操作:
第一步:如图①,矩形纸片ABCD的边长AB=5,将矩形纸片ABCD对折,使点D与点A重合,点C与点B重合,折痕为EF,然后展开,EF与CA交于点H.
第二步:如图②,将矩形纸片ABCD沿过点C的直线再次折叠,使CD落在对角线CA上,点D的对应点D'恰好与点H重合,折痕为CG,将矩形纸片展平,连接GH.
问题解决:
(1)在图②中,sin∠ACB=1212,EGCG=1414;
(2)在图②中,CH2=CG•AEAE;从图②中选择一条线段填在空白处,并证明你的结论;
拓展延伸:
(3)将上面的矩形纸片ABCD沿过点C的直线折叠,点D的对应点D′落在矩形的内部或一边上,设∠DCD′=α,若0°<α≤90°,连接D′A,D′A的长度为m,则m的取值范围是 5≤m<155≤m<15.

5
1
2
1
2
EG
CG
1
4
1
4
5
15
5
15
【考点】相似形综合题.
【答案】;;AE;≤m<
1
2
1
4
5
15
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/5 1:30:2组卷:279引用:2难度:0.2
相似题
-
1.数学课上,王老师出示问题:如图1,将边长为5的正方形纸片ABCD折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.
(1)观察操作结果,在图1中找到一个与△DEP相似的三角形,并证明你的结论;
(2)当点P在边CD的什么位置时,△DEP与△CPG面积的比是9:25?请写出求解过程;
(3)将正方形换成正三角形,如图2,将边长为5的正三角形纸片ABC折叠,使顶点A落在边BC上的点P处(点P与B、C不重合),折痕为EF,当点P在边BC的什么位置时,△BEP与△CPF面积的比是9:25?请写出求解过程.发布:2025/6/15 22:0:1组卷:1072引用:9难度:0.2 -
2.在矩形ABCD中,AD=3,CD=4,点E在边CD上,且DE=1.
感知:如图①,连接AE,过点E作EF⊥AE,交BC于点F,连接AF,易证:△ADE≌△ECF(不需要证明);
探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点E作EF⊥PE,交BC于点F,连接PF.求证:△PDE∽△ECF;
应用:如图③,若EF交AB边于点F,其他条件不变,且△PEF的面积是3,则AP的长为发布:2025/6/16 19:30:1组卷:681引用:3难度:0.1 -
3.如图,AD、BE是△ABC的两条高,过点D作DF⊥AB,垂足为F,FD交BE于M,FD、AC的延长线交于点N.
(1)求证:△BFM∽△NFA;
(2)试探究线段FM、DF、FN之间的数量关系,并证明你的结论;
(3)若AC=BC,DN=12,ME:EN=1:2,求线段AC的长.发布:2025/6/16 11:30:2组卷:851引用:7难度:0.3