如图1,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动.设运动时间为t(s).
(1)求正方形ABCD的边长;
(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(s)之间的函数图象为抛物线的一部分(如图2所示),求P,Q两点的运动速度;
(3)求(2)中面积S(平方单位)与时间t(s)的函数解析式及面积S取最大值时点P的坐标;
(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小.当点P沿着这两边运动时,能使∠OPQ=90°吗?若能,直接写出这样的点P的个数;若不能,直接写不能.

【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:281引用:41难度:0.1
相似题
-
1.如图,已知二次函数y=ax2+bx-4的图象与x轴交于A,B两点,(点A在点B左侧),与y轴交于点C,点A的坐标为(-2,0),且对称轴为直线x=1,直线AD交抛物线于点D(2,m).
(1)求二次函数的表达式;
(2)在抛物线的对称轴上是否存在一点M,使△MAC的周长最小,若存在,求出点M的坐标;
(3)如图2,点P是线段AB上的一动点(不与A、B重合),过点P作PE∥AD交BD于E,连接DP,当△DPE的面积最大时,求点P的坐标.发布:2025/6/6 20:30:1组卷:90引用:1难度:0.2 -
2.如图,已知抛物线y=x2+bx+c与直线y=-x+3相交于坐标轴上的A,B两点,顶点为C.
(1)填空:b=
(2)将直线AB向下平移h个单位长度,得直线EF.当h为何值时,直线EF与抛物线y=x2+bx+c没有交点?
(3)直线x=m与△ABC的边AB,AC分别交于点M,N.当直线x=m把△ABC的面积分为1:2两部分时,求m的值.发布:2025/6/6 21:0:2组卷:327引用:5难度:0.3 -
3.如图,抛物线y=ax2+bx+2经过点A(-1,0),B(4,0),交y轴于点C.
(1)求抛物线的表达式.
(2)点D为y轴右侧抛物线上一点,是否存在点D,使S△ABC=S△ABD?若存在,请求出点D的坐标;若不存在,请说明理由.23
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求点E的坐标.发布:2025/6/6 23:30:1组卷:40引用:1难度:0.3