一种疫苗在正式上市之前要进行多次人体临床试验接种,假设每次接种之间互不影响,每人每次接种成功的概率相等.某医学研究院研究团队研发了新冠疫苗,并率先开展了新冠疫苗I期和II期临床试验.Ⅰ期试验为了解疫苗接种剂量与接种成功之间的关系,选取了两种剂量接种方案(0.5mL/次剂量组(低剂量)与1mL/次剂量组(中剂量)),临床试验免疫结果对比如下:
接种成功 | 接种不成功 | 总计(人) | |
0.5mL/次剂量组 | 28 | 8 | 36 |
1mL/次剂量组 | 33 | 3 | 36 |
总计(人) | 61 | 11 | 72 |
(2)若以数据中的频率为概率,从两组不同剂量组中分别抽取1名试验者,以X表示这2人中接种成功的人数,求X的分布列和数学期望.
参考方式:K2=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
P(K2≥k0) | 0.4 | 0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【考点】离散型随机变量的均值(数学期望).
【答案】(1)1mL/次剂量组(中剂量)方案接种效果好.没有90%的把握认为该疫苗接种成功与两种剂量接种方案有关.
(2)X的分布列为:
E(X)=.
(2)X的分布列为:
X | 0 | 1 | 2 |
P | 1 54 |
29 108 |
77 108 |
61
36
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:29引用:3难度:0.6
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7