在△ABC中,AB=AC=8,∠BAC=120°,取一把含30°角三角板,把30°角的顶点放在边BC的中点P处,三角板绕点P旋转.

基础应用:(1)如图1,当三角板的两边分别交边AB、AC于点E、F,连接EF,试证明:△BPE∽△CFP;
尝试应用:(2)操作:将三角板绕点P旋转到图2情形时,三角板的两边分别交CA的延长线、边AB于点F、E,连接EF,△BPE与△PFE相似吗?请说明理由;
(3)设AE=x,EF=y,直接写出y与x的函数解析式.
【考点】相似形综合题.
【答案】(1)见解答;
(2)△BPE∽△PFE;理由见解答;
(3)y=(0≤x<8).
(2)△BPE∽△PFE;理由见解答;
(3)y=
x
2
-
4
x
+
16
8
-
x
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:98引用:1难度:0.4
相似题
-
1.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.
(1)如图1,连结BE、CD,BE的延长线交AC于点F,交CD于点P,求证:
①△ABE≌△ACD;
②BP⊥CD;
(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连结BE、CD,CD的延长线交BE于点P,若,BC=63,AD=3
①求证:△BDP∽△CDA;
②求△PDE的面积.发布:2025/5/25 12:0:2组卷:294引用:3难度:0.3 -
2.【基础巩固】
(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B,求证:AC2=AD•AB.
【尝试应用】
(2)如图2,在平行四边形ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=5,BE=3,求AD的长.
【拓展提高】
(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠BAD=2∠EDF,AE=1,DF=4,求菱形ABCD的边长(直接写出答案).发布:2025/5/25 17:0:1组卷:480引用:4难度:0.3 -
3.问题提出
如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E在△ABC内部,直线AD与BE交于点F.线段AF,BF,CF之间存在怎样的数量关系?
问题探究
(1)先将问题特殊化如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;
(2)再探究一般情形如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.
问题拓展
如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F.直接写出一个等式,表示线段AF,BF,CF之间的数量关系.发布:2025/5/25 17:30:1组卷:5696引用:14难度:0.6