定义:如图①,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.

(1)已知点M、N是线段AB的勾股分割点,若AM=2,MN=3,则BN2=5或135或13;
(2)如图②,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M、N为边AB上两点,满足∠MCN=45°,求证:点M、N是线段AB的勾股分割点.
阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形.
请你根据阳阳同学的思路将第(2)小题的证明过程补写完整;
证明:把△CBN绕点C逆时针旋转90°,得到△CAN',连接MN'
∴△AN'C≌△BNC
∴CN'=CN,∠ACN'=∠BCN,∠CBN=∠CAN'
∵∠MCN=45°,∠ACB=90°
∴∠N'CA+∠ACM=∠ACM+∠BCN=∠ACB-∠MCN=45°
∴……
(3)在(2)的问题中,若∠ACM=15°,AM=1,CM=3+1,请直接写出BM的长.(提示:在直角三角形中,30°角所对的直角边等于斜边的一半)
3
【考点】几何变换综合题.
【答案】5或13
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:224引用:2难度:0.2
相似题
-
1.如图①,在等边三角形ABC中,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,点M,N,P分别是BE,CD,BC的中点.
(1)观察猜想:△PMN的形状是 .
(2)探究证明:把△ADE绕点A按逆时针方向旋转到图②的位置,△PMN的形状是否发生改变?请说明理由.
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AB=3,AD=1,请直接写出△PMN周长的最大值.发布:2025/6/14 22:30:1组卷:33引用:1难度:0.5 -
2.已知,点D是等边△ABC边AB所在直线AB上一动点(点D与点A、B不重合),连接DC,以DC为边在DC上方作等边△DCE,连接AE;
操作发现:
(1)如图(1),当动点D在AB上,你能发现线段AE与BD之间的数量关系吗?并证明你发现的结论;
(2)如图(2),在(1)的条件下,作△DCE关于直线CD对称的△DCF,连接BF,探究AE、BF与BC有何数量关系?并证明你探究的结论;
拓展探究:
(3)如图(3),当动点D在BA的延长线上,其他作法与(2)相同,当AE=5,BF=2时,求BC的长度.发布:2025/6/14 15:30:1组卷:134引用:2难度:0.2 -
3.如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC=4,AD=AE=2.连接CD,BE,F,G,H分别是BE,CD,DE的中点,连接GF,FH,GH.
(1)如图1,当B,A,E三点共线,且D在AC边上时,求线段FH,GH的长;
(2)如图2,当△ADE绕点A旋转时,求证:△GFH是等腰直角三角形,并直接写出△GFH面积的最大值.发布:2025/6/14 15:0:1组卷:139引用:2难度:0.3