一个四位正整数A的千位上的数字小于十位上的数字,且千位上的数字与百位上的数字之和等于十位上的数字与个位上的数字之和,均等于10,则称A为“十全十美数”,将“十全十美数”A的千位和百位数字组成的两位数与十位和个位数字组成的两位数的和记为F(A),将“十全十美数”A的千位和十位数字组成的两位数与百位和个位数字组成的两位数的差记为G(A).
例如:四位正整数2873,
∵2+8=7+3=10,且2<7
∴2873是“十全十美数”,
此时,F(A)=28+73=101,G(A)=27-83=-56.
(1)若M是最大的“十全十美数”,请直接写出:M=82918291,F(M)=173173,G(M)=6868;
(2)若A是“十全十美数”,且2F(A)+G(A)能被9整除,求所有符合条件的A的值.
【考点】因式分解的应用.
【答案】8291;173;68
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:389引用:2难度:0.5
相似题
-
1.阅读下列题目的解题过程:
已知a、b、c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;
(2)错误的原因为:;
(3)本题正确的结论为:.发布:2024/12/23 18:0:1组卷:2630引用:25难度:0.6 -
2.阅读理解:
能被7(或11或13)整除的特征:如果一个自然数末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是7(或11或13)的倍数,则这个数就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法验证67822615是7的倍数(写明验证过程);
(2)若对任意一个七位数,末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是11的倍数,证明这个七位数一定能被11整除.发布:2025/1/5 8:0:1组卷:134引用:3难度:0.4 -
3.若a是整数,则a2+a一定能被下列哪个数整除( )
发布:2024/12/24 6:30:3组卷:420引用:7难度:0.6